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in anticipation that the side effects will prove to be min-
imal, we propose to evaluate the safety and efficacy of
NTBC for alkaptonuria patients. With the cooperation
of Dr. C. Ronald Scott of the University of Washington,
we now are attempting to secure NTBC for use in the
treatment of alkaptonuria.

Whereas gene therapy generally involves specific tissue
localization, pharmacotherapy routinely employs a wide
range of targets. For many metabolic disorders, this pro-
vides a distinct advantage. For example, in the treatment
of cystinosis, cysteamine has beneficial effects upon a
variety of organs and tissues (Gahl et al. 1995), including
the kidney, muscle, cornea, and thyroid (Kimonis et al.
1995). NTBC could have multisystemic salutary effects
as well, meaning that we really are ready to try to cure
alkaptonuria.
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Gene Localization for Aculeiform Cataract, on
Chromosome 2q33-35

To the Editor:
Aculeiform cataract (MIM 115700) is a form of con-
genital crystalline cataract that originally was described
by Vogt in 1922 and was referred to as “Spiesskatarakt”
(Vogt 1922). Since its original description, this entity
also has been referred to as “frosted cataract,” “needle-
shaped cataract,” or “fasciculiform cataract” (Parker
1956). This phenotype is characterized by fiberglasslike
or needlelike crystals projecting in different directions,
through or close to the axial region of the lens (fig. 1).
Some crystals may be 11 mm in length, and their bio-
chemical composition is not known. This type of cata-
ract is considered to be different from the corraliform
cataract, which does not show the needlelike projections.
This opacity does not appear to respect the sutures or
the direction of the lens fibers (François 1963) and ap-
pears to originate from the fetal and postnatal nuclei,
suggesting a congenital origin with some postnatal pro-
gression, if any. The opacity causes a variable degree of
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Figure 1 Left, Slit-lamp photography (retroillumination) of an individual affected with aculeiform cataract (A:IV-10; age 8 years) The
central opacity projects in all directions, in needlelike endings, into the anterior and posterior cortex. Right, Ultrasound biomicroscopic evaluation
of the opacity, showing involvement of the peripheral embryonal nucleus, extending into the cortical area of the lens. ant � anterior, post �
posterior, c � capsule, and o � opacity.

vision loss, and surgery may be required to restore visual
function.

Although usually bilateral, unilateral cases of aculei-
form cataract have been described (Gifford and Pun-
thenney 1937; Parker 1956; Rosselet 1961; Collier
1965). Dominant inheritance with complete penetrance
and minimal variable expressivity has been reported in
most affected European and North American pedigrees,
with no sex predilection documented (Vogt 1922; Cords
1926).

A mapping study was performed with three unrelated
families affected with the classic aculeiform-cataract
phenotype, in an attempt to identify the disease-gene
location. The families originated from Macedonia (fam-
ily A) and the Neuchâtel area of Switzerland (families
B and C) (fig. 2), and all affected individuals had the
typical crystalline lens opacity.

A total of 19 affected family members, 17 unaffected
family members, and 7 spouses were genotyped and
studied by linkage analysis. The initial strategy consisted
of screening 13 candidate loci related to congenital cat-
aract and the crystallin genes (Cartier et al. 1994; Ar-
mitage et al. 1995; Eiberg et al. 1995; Berry et al. 1996;

Ionides et al. 1997; Litt et al. 1997, 1998). Linkage
was identified with short tandem-repeat–polymorphism
markers in the 2q33-q35 region, around the g-crystallin
locus. Two-point maximum-likelihood data for markers
in this region are summarized in table 1. When the data
from all three families were combined, the maximum
LOD score (Zmax) was 6.27 (recombination fraction [v]
0), with marker D2S2208. The LOD-score results for
family A alone remained 13 for at least six neighboring
markers (data not shown).

The order of the markers used at the 2q33-35 locus,
proximal to distal, and the intermarker distances were
determined from published maps (Buetow et al. 1994;
Gyapay et al. 1994; Murray et al. 1994; Dib et al. 1996)
and genome databases (Cooperative Human Linkage
Center and Genome Database) and are as follows (pa-
rentheses denote that intermarker distance is unknown):
(D2S1391)–D2S2273–4 cM–D2S118, D2S389–8 cM–
D2S116–6 cM–D2S155–2 cM–D2S2242, D2S2208–
2 cM–D2S2321, D2S157–(CRYGA)–5 cM–D2S143–
3 cM–D2S2382–1 cM–D2S164–(D2S434)–1 cM–
D2S2249, D2S173–(Villin)–3 cM–D2S163–3 cM–
D2S126–1 cM–PAX3, D2S2197–(D2S1363)–8 cM–



Figure 2 Pedigrees of families studied, with haplotypes for selected markers relevant to recombinant breakpoints on chromosome 2q33-
35. Blackened squares and circles denote affected individuals, and diamonds denote nonparticipating relatives. A dash within a marker order
denotes an untyped marker (deemed not critical to the identification of recombination events), which is not considered to be within the disease-
gene interval. A haplotype cosegregating with the affected status is indicated by a blackened bar; the critical crossovers defining the proximal
and distal boundaries of the aculeiform candidate region are shown in family B, individuals III:3 and IV:4, placing the disease locus between
the markers D2S2273 and D2S143. Unblackened and patterned bars denote the non–disease-associated haplotypes.
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Table 1

Two-Point Linkage Data for Aculeiform-Cataract Phenotype and Markers of
2q33-35 Region

MARKER

LOD SCORE AT v �
MAXIMUM

v Zmax.00 .05 .10 .20 .30 .40

D2S1391 �1.96 2.18 2.17 1.79 1.22 1.08 .05 2.18
D2S118 5.25 4.77 4.28 3.22 2.09 .97 .00 5.25
D2S389 6.12 5.53 4.91 3.60 2.28 1.59 .00 6.12
D2S116 5.39 4.89 4.39 3.34 2.25 1.10 .00 5.39
D2S155 6.08 5.51 4.93 3.69 2.39 1.14 .00 6.08
D2S2208 6.27 5.64 5.04 3.79 2.48 1.15 .00 6.27
D2S2321 3.07 2.77 2.47 1.86 1.24 .61 .00 3.07
D2S157 3.36 3.08 2.77 2.15 1.47 .75 .00 3.36
CRYGA 1.36 1.26 1.14 .83 .53 .22 .00 1.36
D2S143 5.83 5.34 4.82 4.29 3.71 3.13 .00 5.83
D2S2382 3.33 3.13 2.87 2.22 1.49 .71 .00 3.33
D2S164 4.18 3.90 3.51 2.75 1.85 .88 .00 4.18
D2S126 �1.33 2.81 2.79 2.36 1.89 .89 .07 2.88
PAX3 2.81 2.49 2.18 1.61 1.01 .45 .00 2.81
D2S1363 3.39 3.15 2.84 2.16 1.41 .64 .00 3.39
D2S159 �10.04 �.60 �.13 .17 .12 .05 .20 .17

NOTE.—Linkage analysis was performed with the LINKAGE program package
(version 5.1), and MLINK was used for pairwise analysis. A full-penetrance, equal
allele frequency and a disease-gene frequency of .0001 were assumed for the disease
locus.

Table 2

Haplotype Analysis of Aculeiform Cataract

MARKER

INTERMARKER

DISTANCE(cM)

AFFECTED

HAPLOTYPE

IN FAMILYa

A B C

D2S116 3 4 7

D2S155 6 1
3 6

D2S2242 2 8 1 1
D2S2208 0 6 8 8
D2S2321 2 4 2 2
D2S157 0 5 6 6
CRYGA 2 1 1
D2S143 5 5 3 3

D2S2382 3 6
5 5

D2S164 1 9 10 11
D2S434 5 4 3

a The region of allele sharing is circumscribed
by the box, and the alleles that define the disease-
gene interval when the recombination events
shown in figure 2 are taken into account are
underlined.

D2S159. The marker CRYGA was an intragenic poly-
morphism of the g-crystallin–A gene.

Critical recombination events observed in affected in-
dividuals defined an initial disease-gene interval of 27
cM between markers D2S2273 and D2S143 (fig. 2). Fur-
thermore, observation of recombination events in the
unaffected allele of individual C:IV-1 allowed ordering
of markers D2S2321 and D2S157 (cen-D2S2321-
D2S157-tel), which were nonrecombinant on the Gé-
néthon map (Dib et al. 1996).

Haplotype analysis showed a common affected hap-
lotype for seven markers (D2S2242, D2S2208,
D2S2321, D2S157, CRYGA, D2S143, and D2S2382)
over a 10-cM interval in families B and C (see alleles
within the box in table 2). Although no common an-
cestor could be identified through genealogical studies,
both families are from the relatively small Neuchâtel
area of Switzerland (population ∼170,000). The shared
haplotype, together with the recombination events ob-
served between markers D2S2242 and D2S143, define
a disease-gene interval of 7 cM (see the underlined alleles
in table 2).

Several candidate genes are of interest in this interval,
the most relevant being the g-crystallin–gene cluster,
CRYG (2q33-35). Although the precise position of
CRYGA is unclear, haplotype analysis and observation
of recombination events in families A and B suggest that
CRYGA is distal to D2S155 and centromeric to D2S143.
Another crystallin gene, CRYBA2, has been mapped to
the 2q34-36 region (Hulsebos et al. 1995). However,

physical mapping using radiation-hybrid cell lines placed
CRYGA separate from and centromeric to CRYBA2
(Hulsebos et al. 1995). The gene order in the human
2q33-36 segment appears to be syntenic with that of
genes on mouse chromosome 1, and, in the mouse,
Cryba2 is nonrecombinant with Villin (Vil) (10.6 cM
telomeric to Cryg) (Hulsebos et al. 1995). Genotyping
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the three families using a dinucleotide repeat close to
Villin confirms its location as being telomeric to
CRYGA, since it is mapped below the recombination
breakpoint in individual A:IV-14 (fig. 2). If synteny be-
tween the mouse genome and the human genome is as-
sumed for this region, CRYBA2 would be located out-
side the disease-gene interval of interest. A develop-
mental gene, PAX-3, was documented at the telomeric
end of the interval. However, observation of recombi-
nation events centromeric to this gene, in the families
studied, excluded the potential role of PAX-3 in this
cataract phenotype (fig. 2).

The human g-crystallin genes constitute a multigene
family whose members are expressed only in the eye lens.
The g-crystallin–gene cluster contains six highly con-
served genes (A–F), all mapped to chromosome 2q33-
q35 (den Dunnen et al. 1985; Meakin et al. 1985) and
specific to mammals (Cveki and Piatgorsky 1996) . The
relative position of the g-crystallins B–E have been es-
tablished on a 40-kb DNA segment, but the exact lo-
cations for g-crystallins A and F in the gene cluster are
yet to be determined (Meakin et al. 1985). The g-crys-
tallin cluster is of great interest in the study of congenital
cataract, since it is expressed early in development and
is presumed to play a role in both fiber differentiation
and maintenance of lens-fiber transparency (Papacon-
stantinou 1967). Furthermore, this locus has been as-
sociated with hereditary cataract in mouse and human
(Oda et al. 1980; Lubsen et al. 1987; Cartier et al. 1992;
Santhiya et al. 1995).

Although g-crystallins E and F are considered to be
pseudogenes, by virtue of an in-frame stop codon
(Meakin et al. 1985), a low level of g-crystallin–E tran-
script has been detected (Brakenhoff et al. 1994). Lubsen
et al. (1987) reported a tight linkage between the g-
crystallin–gene cluster on chromosome 2 and a pheno-
type referred to as “Coppock-like cataract,” confined to
the embryonic nucleus (clearly distinct from the aculei-
form cataract) (Lubsen et al. 1987). Recent work has
demonstrated that sequence changes upstream from the
g-crystallin–E pseudogene result in a 10-fold increase in
the activity of the g-crystallin–E promoter. These data
suggest a potential role for the g-crystallin–E peptide in
the Coppock-like cataract of human (Brakenhoff et al.
1994).

Of interest in the Elo and the Cat2 mutant-mouse
models, the g-crystallin–E gene is the target of mutations
and also is responsible for cataract phenotypes (Oda et
al. 1980; Cartier et al. 1992; Santhiya et al. 1995). In
both these mutants, the opacity involves the embryonic
nucleus.

Recently, Rogaev et al. (1996) studied a large family,
from the isolated Nokhurli population of Turkmenia,
that is affected with polymorphic congenital cataract
(PCC). This phenotype also mapped to the 2q33 locus,

and it was characterized by a progressive, mostly pe-
ripheral, and highly variable opacity (Ginter et al. 1983,
1991). Whether PCC, Coppock-like cataract, and acu-
leiform cataract are allelic variants remains to be elu-
cidated, but they clearly are three distinct clinical
entities.

In summary, the localization of a gene for aculeiform
cataract has been identified on chromosome 2q33-35,
within a 7-cM interval. This condition appears to be
genetically homogeneous. Refinement of the disease-
gene interval and analysis of the g-crystallin–gene cluster
are currently underway, in an attempt to identify the
disease-causing mutation(s). The molecular characteri-
zation of this phenotype may shed light on the complex
cascade of events modulating lens differentiation.
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stitute of Canada, 399 Bathurst Street, Room 6-412, Toronto, M5T 2S8 Ontario,
Canada. E-mail: eheon@playfair.utoronto.ca

� 1998 by The American Society of Human Genetics. All rights reserved.
0002-9297/98/6303-0043$02.00


	Gene Localization for Aculeiform Cataract, on Chromosome 2q33-35
	Acknowledgments
	References




